ISSN 1600-5368

Xiang Chao Zeng* and Ying Zhou Cen

Department of Chemistry, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China

Correspondence e-mail: xczeng@126.com

Key indicators

Single-crystal X-ray study T = 293 KMean $\sigma(\text{C-C}) = 0.003 \text{ Å}$ R factor = 0.045 wR factor = 0.128 Data-to-parameter ratio = 17.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Methyl 3-(1H-pyrrol-2-ylcarboxamido)propionate

In the crystal structure of the title compound, $C_9H_{12}N_2O_3$, intermolecular $N-H\cdots O$ hydrogen bonds link the molecules into two-dimensional sheets.

Received 3 January 2006 Accepted 17 January 2006

Comment

Pyrrole derivatives are well known in many marine organisms (Faulkner, 2001) and some of them are bioactive substances (Tasdemir *et al.*, 2002).

In our search for bioactive compounds, a series of pyrrol-2ylcarbonylamino acid esters, including the title compound, (I), have been synthesized by reaction of amino acid esters with 2-(trichloroacetyl)pyrrole or 1-methyl-2-(trichloroacetyl)pyrrole. Pharmacological studies have shown that (I) moderately inhibits *Streptococcus faecalis* and *Micrococcus luteus*. We report here the crystal structure of (I).

Bond lengths and angles are unexceptional and are in good agreement with the corresponding values in 3-(pyrrol-2-ylcarboxamido)propanoic acid (Zeng *et al.*, 2005).

There are two kinds of intermolecular hydrogen bonds (Table 1) in the crystal structure. $N2-H\cdots O1^{ii}$ hydrogen bonds link molecules into one-dimensional chains (Fig. 2), while individual chains are linked by $N1-H\cdots O2^{i}$ hydrogen bonds, generating two-dimensional sheets (also shown in Fig. 2)

Experimental

The hydrochloric acid salt of methyl 3-aminopropionate (0.70 g, 5 mmol) and 2-trichloroacetylpyrrole (1.06 g, 5 mmol) were added to acetonitrile (12 ml), followed by the dropwise addition of triethylamine (1.4 ml). The mixture was stirred at room temperature for 12 h and then poured into water. After filtration, the precipitate was collected as a pale-brown solid. The impure product was dissolved in methanol at room temperature. Colorless plate-shaped crystals suitable for X-ray analysis (m.p. 407 K, yield 94.9%) grew over a period of 10 d when the solution was exposed to air. ¹H NMR (CDCl₃, 500 Hz): 10.40 (*brs*, 1H), 6.93–6.91 (*m*, 1H), 6.76 (*brs*, 1H), 6.62–6.60 (*m*, 1H), 6.21–6.20 (*m*, 1H), 3.70 (*s*, 3H), 3.71–3.67 (*m*, 2H), 2.64 (*t*, 2H); IR (KBr): 3364, 3326, 3115, 1725, 1625, 1565, 1531, 1345, 1191, 1109. Analysis calculated for C₉H₁₂N₂O₃: C 55.09, H 6.16, N 14.28%; found: C 55.03, H 6.32, N 14.50%.

All rights reserved

© 2006 International Union of Crystallography

Figure 1

The molecular structure of the title compound, showing the atomnumbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Mo Ka radiation

reflections

 $\begin{array}{l} \theta = 2.7 {-} 23.4^{\circ} \\ \mu = 0.10 \ \mathrm{mm}^{-1} \end{array}$

T = 293 (2) K

Plate, colorless $0.45 \times 0.41 \times 0.10 \text{ mm}$

Cell parameters from 2641

 $w = 1/[\sigma^2(F_0^2) + (0.0509P)^2]$

where $P = (F_0^2 + 2F_c^2)/3$

+ 0.7536P]

 $(\Delta/\sigma)_{\rm max} = 0.020$

 $\Delta \rho_{\rm max} = 0.21 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.18 \text{ e } \text{\AA}^{-3}$

Crystal data

C₉H₁₂N₂O₃ $M_r = 196.21$ Orthorhombic, *Pbca* a = 10.1525 (14) Å b = 13.1586 (18) Å c = 14.922 (2) Å V = 1993.5 (5) Å³ Z = 8 $D_x = 1.307$ Mg m⁻³

Data collection

Daulton SMADT 1V CCD area	2104 in doman dant noffections
Bruker SMART IK CCD area-	2194 independent reflections
detector diffractometer	1263 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.048$
Absorption correction: multi-scan	$\theta_{\rm max} = 27.2^{\circ}$
(SADABS; Sheldrick, 1996)	$h = -13 \rightarrow 12$
$T_{\min} = 0.957, T_{\max} = 0.990$	$k = -16 \rightarrow 16$
12061 measured reflections	$l = -18 \rightarrow 19$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.045$ $wR(F^2) = 0.128$ S = 1.002194 reflections 128 parameters H-atom parameters constrained

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N1-H1\cdots O2^i$	0.86	2.12	2.893 (2)	149
$N2-H2\cdots O1^{ii}$	0.86	2.11	2.954 (2)	167
$\frac{N2-H2\cdots01^{n}}{(2)}$	0.86	2.11	2.954 (2)	167

Symmetry codes: (i) -x, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) $x + \frac{1}{2}$, y, $-z + \frac{1}{2}$.

H atoms were positioned geometrically (C–H = 0.97 Å for CH₂, 0.96 Å for CH₃, C–H = 0.93 Å for aromatic CH and N–H = 0.86 Å)

Figure 2

The crystal packing of (I), showing the two-dimensional sheet formed by hydrogen bonds (dashed lines).

and refined using a riding model, with $U_{\rm iso} = 1.2U_{\rm eq}$ (1.5 $U_{\rm eq}$ for the methyl group) of the parent atom.

Data collection: *SMART* (Bruker, 1999); cell refinement: *SAINT-Plus* (Bruker, 1999); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXTL* (Bruker, 1997); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

The project was supported by the Natural Science Foundation of Guangdong Province, China (No. 039213).

References

- Bruker (1997). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Faulkner, D. J. (2001). Nat. Prod. Rep. 18, 1-49.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Tasdemir, D., Mallon, R., Greenstein, M., Feldberg, L. R., Kim, S. C., Collins, K., Wojciechowicz, D., Mangalindan, G. C., Concepcion, G. P., Harper, M. K. & Ireland, C. M. (2002). J. Med. Chem. 45, 529–532.
- Zeng, X. C., Xu, S. H., Gu, J. & Liu, P. R. (2005). Chin. J. Struct. Chem. 24, 779– 782.